
JOURNAL OF COMPUTATIONAL PHYSICS 125, 124–134 (1996)
ARTICLE NO. 0083

Contribution to the Optimal Shape Design of Two-Dimensional
Internal Flows with Embedded Shocks

ANGELO IOLLO*

Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, 10129 Turin, Italy

AND

MANUEL D. SALAS

NASA Langley Research Center, Hampton, Virginia 23681-0001

Received December 9, 1994; revised August 28, 1995

usually calculated with a black-box method. Such a method
consists in using finite differences to determine the gradientWe explore the praticability of optimal shape design for flows

modeled by the Euler equations. We define a functional whose of the functional, and therefore, for each gradient computa-
minimum represents the optimality condition. The gradient of the tion, it needs as many flow-field solutions as the number
functional with respect to the geometry is calculated with the La- of design variables.
grange multipliers, which are determined by solving a costate equa-

In using models of increased complexity to describe thetion. The optimization problem is then examined by comparing the
flow field, such as Euler or Navier–Stokes equations, theperformance of several gradient-based optimization algorithms. In

this formulation, the flow field can be computed to an arbitrary order development of new algorithms is necessary to reduce the
of accuracy. Finally, some results for internal flows with embedded computational load. In this paper, we investigate one
shocks are presented, including a case for which the solution to method for achieving this reduction.
the inverse problem does not belong to the design space. Q 1996

The cost of the optimization comes from three sources.Academic Press, Inc.

The cost of evaluating the flow field, the cost of evaluating
the gradient and number of gradient evaluations necessary
to reach the minimum. In this article we are concerned1. INTRODUCTION
with the problem of avoiding unnecessary computations

A classical problem in engineering is to define the shape for the evaluation of the gradient of the functional with
of a manufacture to achieve a required performance. In respect to the design variables. Other methods, including
fluid dynamics, techniques have been developed to solve the black-box method and the sensitivity equation method
the following inverse problem: given a pressure or a veloc- [2], require the solution either of the Euler equations or
ity distribution over an aerodynamic body, determine the of an additional partial differential equation (PDE) for
corresponding geometry. See, for example, reference [7]. each design variable and for each gradient evaluation.
A broader category of problems can be solved by means We apply a variational technique that has been used
of optimization, provided that one is ready to accept the since before complex flows could be integrated numeri-
necessity of computing the flow field hundreds of times. cally. See, for example, Ref. [9]. Jameson [6] was the first

It is possible, in fact, to define a functional or cost func- to apply the abovementioned technique to computational
tion such that its minimum represents an optimal solution. fluid dynamics. With such an approach, a functional or cost
For example, the drag of an airfoil can be selected as the function is determined such that its minimum represents an
cost function to be minimized for a given lift. Many existing optimal solution. The flow-field equations can be consid-
methods of solving such minimization problems are based ered as constraints in the minimization. By introducing a
on descent algorithms which make use of the gradient of set of Lagrange multipliers, the constrained minimum of
the functional with respect to the geometry. The gradient is the functional with respect to the geometry, is transformed

into a free minimum with respect to the geometry to the
flow-field unknowns, and to the Lagrange multipliers.

* This research was supported in part under NASA contract no. NAS1-
With this formulation the gradient of the functional can19480 while the first author was in residence at the Institute for Computer

be calculated with respect to the geometry by computingApplications in Science and Engineering, NASA Langley Research Cen-
ter, Hampton, VA 23681-0001. the flow field only once for each gradient evaluation. For
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incompressible irrotational steady flows, a further reduc-
tion in the computational effort is possible (see [13]).

The formulation developed in this work is in the spirit of
the mathematical frame set in [8]. In fact, calculating the
gradient of the functional, the flow-field variables are con-
sidered independent of the geometry, thus avoiding inaccu-
racies and confusions that may arise when considering the
variation of the geometry.Although this formulation is simi-
lar to that in [6], it circumvents the theoretical objection of
adding to the functional to be minimized a term that is al-
ways zero if the flow-field equations are satisfied. Compared
to previous work, our formulation is not tied to conformal

FIG. 1. Model problem.mapping and can treat captured or fitted shocks.
In this respect, we extend the work presented in Ref.

[1]. In that formulation, an exact gradient with respect
to the design variables was obtained for the discretized

a 5 speed of soundfunctional. This is a limitation for compressible flows, be-
cause in presence of shocks the discretized functional could c 5 specific heats ratio
present discontinuities. However, in paper [1], only revers-
ible nozzle flows were taken into account. k 5

c 2 1
2In reference [5] quasi one-dimensional compressible

flows with embedded shocks were considered and the gra-
and p 5 kr(2e 2 u2 2 v2). Furthermore,dient of the functional was derived on a continuous level.

Here, we consider two-dimensional Euler flows with
shocks, and we provide a method for calculating the condi- F 5

­F
­U

U 5 A(U)U (2)
tions that the Lagrange multipliers must satisfy at the
boundaries and at the shock. Finally, we point out that

andour formulation can be used with complex flow solvers
because the differentiability of the solver is not requested.

G 5
­G
­U

U 5 B(U)U, (3)
2. PROBLEM STATEMENT

The Euler equations are given by where A and B are given in Appendix I.
We assume that these equations are defined on a physical

Ut 1 Fx 1 Gy 5 0, (1) space F. In this space is included a subdomain V whose
boundary is denoted by G. On the boundary, we define a

where curvilinear coordinate s and a normal n 5 (nx , ny) that
points outward.

The optimization problem studied here is defined as the
minimization of the functional E 5 eG f(p, r, u, v, G) ds
over all admissible shapes of the subdomain V, subject toU 5 1

r

ru

rv

re
2 F 5 1

ru

p 1 ru2

ruv

u(re 1 p)
2G 5 1

rv

ruv

p 1 rv2

v(re 1 p)
2 the steady-state Euler equations with proper boundary

conditions on G.
Although the method we present is general, we focus

on the following model problem. The subdomain V is rep-
with resented by a nozzle. (See Fig. 1.) At the inlet, total pres-

sure, total temperature, and the ratio s 5 v/u are fixed.
r 5 density At the outlet, if the flow is subsonic, the static pressure is

fixed, and at the solid walls the impermeability conditionu 5 x component of velocity vector
unx 1 vny 5 0 is enforced. The upper wall is kept fixed.

v 5 y component of velocity vector The lower wall Q is represented by the parameterization

e 5 specific total energy
y(Q) 5 O

i
ai fi(x), (4)

p 5 pressure
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where the functions fi(x) are shape functions and a 5 (a1 , Furthermore,
..., ai , ...) is the corresponding set of shape coefficients.
Given a desirable lower wall pressure distribution p*(x) dLL 5 E

V

tL̃(AUx 1 BUy) dV (8)
and the actual pressure distribution on the lower wall pw(x),
the optimization problem consists in finding a set of shape

dLe 5 E
Q

ẽrV ? n ds (9)coefficients ai such that the functional

dLa 5 O
i
FEb

a

dp
dyU

Q

(pw 2 p*) fi dx
E 5

1
2
Eb

a
(pw 2 p*)2 dx (5)

1 E
Q

tL(AUx 1 BUy) fi cos u ds
is minimized.

1 E
Q

e
­(rV)

­y
? nfi ds 2 E

Q
erV ? t

dfi

dx
cos2u ds

3. LAGRANGE MULTIPLIERS AND OPTIMALITY

The problem of achieving the minimum is addressed by 1 E
Q

erV ? n
dfi

dx
sin u cos u dsG ãi , (10)

introducing a set of Lagrange multipliers. Consider the
augmented functional

where u is the angle between the normal n and the y-axis
and t 5 (2ny , nx).

L(U, a, L, e) 5 E 1 Et

V
L(AUx 1 BUy) dV

(6)

At the minimum of the functional, we have dL 5 0 for
all possible choices of the functions Ũ, L̃, and ẽ and of
the parameters ã. This condition is reached when1 E

Q
erV ? n ds,

dLU 5 dLL 5 dLe 5 dLa 5 0. (11)
where V 5 (u, v). The vector L(x, y) 5 t(l1 , l2 , l3 , l4)
and the scalar e(s) are the continuous equivalents of the Note that because of the necessary conditions (Eqs. (11))
Lagrange multipliers. the unconstrained minimum of the functional L(U, a, L, e)

We calculate the variation of the functional L with re- corresponds to the constrained minimum of the functional
spect to the variation of the functions U, L, and e and the E(a). In fact, we have
parameters ai , respectively. When U(x, y) is increased by a
function «Ũ(x, y), the functional L increases by an amount dLL 5 0 ⇒ AUx 1 BUy 5 0 and dLe 5 0 ⇒ rV ? n 5 0,
«dL U . In the same way, L(x, y) is increased by «L̃(x, y);
e(s), by «ẽ(s); and each ai , by «ãi . which means that U must satisfy the Euler equations withIf we follow the derivation in Appendix II and take

boundary conditions. In addition, for the minimum of L,
we have dLU 5 0, which leads to

dL 5 dLU 1 dLL 1 dLe 1 dLa

tALx 1 BLy 5 0 on V (12)
then we obtain

­p
­UU

Q

(pw 2 p*) cos u 1 tL(Anx 1 Bny)

(13)
dLU 5 Eb

a

­p
­UU

Q

(pw 2 p*)Ũ dx 1 E
G

tL(Anx 1 Bny)Ũ ds

(7)
1 en

­rV
­U

5 0 on Q.

2 E
V

(tLxA 1 tLyB)Ũ dV 1 E
Q

en
­rV
­U

Ũ ds,
At the inlet, outlet, and upper wall,

where
tL(Anx 1 Bny)Ũ 5 0. (14)

Given U and the set of costate equations (12) and (14),
­p
­U

5 2k Su2 1 v2

2
, 2u, 2v, 1D and

­rV
­U we can uniquely determine L in V and e on Q. (See

Appendix III.)
Finally, given a and given U and L from the above5S0 1 0 0

0 0 1 0
D.

equations, we can calculate from Eq. (10)
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­L

­ai
5 Eb

a

dp
dyU

Q

(pw 2 p*) fi dx

1 E
Q

tL(AUx 1 BUy) fi cos u ds
(15)

1 E
Q

e
­(rV)

­y
? nfi ds 2 E

Q
erV ? t

dfi

dx
cos2 u ds

FIG. 2. Discrete grid.

1 E
Q

erV ? n
dfi

dx
sin u cos u ds.

approaches, for a given number N of shape coefficients andIn cases for which shock occurs in the flow field, we split
for a given descent method, the cost of the minimization isthe domain of integration by means of a curve Y that
about N times the cost of a minimization performed withcoincides with the shock where it exists. Then, we follow
the algorithm presented above, making many optimiza-the same derivation so far on each of the two subdomains,
tions infeasible because too expensive.with Y as a boundary. Considering the one-dimensional

characteristic pattern of the costate equations in the direc-
4. DISCRETE PROBLEMtion normal to the shock, it is seen that the costate equa-

tions need additional conditions at the shock for the well
We introduce a discrete grid that is defined as (xl ,posedness of the problem. For a complete discussion of

ym) 5 (x0 1 l Dx, y(Q) 1 m Dy), where Dx is constant andthis topic we refer the reader to [5]. The conditions derived
Dy is a constant fraction of the local height of the nozzle.for the two-dimensional case are presented in Appendix
(See Fig. 2.)III.

The steady solution of the Euler equations is obtainedThe strategy that we use to achieve the minimum of L
with a time-dependent technique, in the frame of an ex-is as follows:
plicit finite-volume code. The conservative variables U are
computed at the cell centers, and the fluxes F and G are1. Start with a set a of shape coefficients.
evaluated at the cell interfaces with the approximate Rie-2. Enforce dLL 5 0 and dLe 5 0 by finding U such that
mann solver in Ref. [12]. Second-order accuracy is achievedit satisfies the steady-state Euler equations and bound-
by using an essentially nonoscillatory scheme [4]. Withary conditions.
such an approach the flow-field values at the cell interfaces,

3. Enforce dLU 5 0 by finding L such that it satisfies used as initial conditions for the Riemann problem, are
the costate equations and boundary conditions. reconstructed by means of a linear interpolation. The oc-

4. Calculate =a L. If =a L 5 0 then we have determined currence of spurious oscillations is prevented using a min-
the minimum; otherwise continue to steps 5 and 6. mod limiter. The amplitude of the integration step is cho-

sen in accordance with the Courant–Friedrichs–Lewy5. Update a with criteria based on =a L.
(CFL) condition.

6. Restart from step 2.
The costate equations are discretized on the same grid

presented above. Because they have no conservative form,As anticipated in the Introduction, the cost of the optimiza-
the numerical solution is obtained with a finite-differencetion comes from three sources: the cost of evaluating the
scheme. We introduce a set of curvilinear coordinatesflow field, the cost of evaluating the gradient, and the
w(x, y) and c(x, y). The costate equations are then writtennumber of gradient evaluations necessary to reach the min-

imum. With the above algorithm, we address the problem
tALw 1 tBLc 5 0, (16)of reducing the cost of each gradient computation, because

only one flow-field evaluation is necessary to compute all
the components of the gradient, at the cost of solving the where A 5 Awx 1 Bwy and B 5 Acx 1 Bcy . The trans-

formations w and c are defined as (xl , ym) R
w

l andcostate equations.
In contrast, for each gradient evaluation, the black-box (xl , ym) R

c
m, respectively.

We find the solution of Eq. (16) as the asymptotic limitmethod needs as many flow-field evaluations as the number
of design variables, and the information it delivers is often of a time-dependent technique. As for the solution of the

Euler equations, the CFL condition limits the convergenceinaccurate. Other existing methods, such as sensitivity
equation methods (see [2]), offer more accurate gradient rate to the steady solution. Nevertheless, comparisons be-

tween time-iterative methods and direct solvers havecomputations but suffer from the disadvantage of requiring
the solution of PDE for each design variable. With such shown that their overall costs (including memory) is similar
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for two-dimensional problems and time-iterative methods can be regarded as a two-dimensional interpretation of the
method presented in Ref. [10].are more efficient for three-dimensional problems.

Consider Eq. (16) embedded in time as The boundary conditions can be split in a similar way.
Consider, for example, the boundary condition at the solid
wall. Because Eq. (19) is defined along the wall, the charac-6 Lt 1 tALw 1 tBLc 5 0. (17)
teristic variables can be upwinded according to the corre-
sponding eigenvalues. In contrast, the third row of Eq.We must select the proper sign for the time derivative.
(20), which corresponds to the characteristic with a speedThe inlet and outlet boundary conditions for the costate
of 1a, is replaced by the boundary condition in Eq.equations are complementary to those of the flow-field
(AIII.5). Note that the contravariant component of theequations, in the sense that if the number of boundary
speed in the direction c is 0; therefore, the resulting systemconditions for the flow field is c, then the number of bound-
can be written asary conditions for the costate equations is 4 2 c. Therefore,

the above equations and boundary conditions are well
posed if we select the negative sign for the time derivative.
In fact, the resulting characteristic pattern is mirror sym-
metric with respect to that of the flow-field equations. 5

DtW 01 5 0

DtW 02 5 0

nx Dtl02 1 ny Dtl03 5 2(pw 2 p*) cos u 2 nx Dtl92 2 ny Dtl93

DtW 04 5 a Dt (Ïc 2
x 1 c 2

y) DmW 04,

In the presence of a shock in the flow field, the matrices
tA and tB are discontinuous. In particular, the characteris-
tic pattern at the shock indicates the necessity of a bound-

(21)ary condition for the costate equations. For further discus-
sion, see Ref. [5].

where D(?) is the forward finite increment of the functionThe costate equations are linear and as such are the
(?) with respect to the superscripted variable andboundary conditions. We exploit this property to solve

these equations numerically. Suppose that locally we sepa-
rate the variables through the following approximation:

DW 5 1
DW1

DW2

DW3

DW4

25 tL21
n DL.L(w, c, t) 5 L9(w, t) 1 L0(c, t). (18)

This separation of variables means that, for example, in a
Taylor expansion about the point (w, c) we disregard all
terms that involve the cross product wc arising from terms In the third row of Eq. (21), we have the functions of DtL9,
higher than the first. This approximation is at least first- which are computed separately as mentioned. The other
order accurate. We substitute Eq. (18) into Eq. (17) to boundary conditions are enforced in the same pattern that
obtain is presented above.

In addition to the theoretical difficulties arising when
flows with embedded shocks are considered, on the discrete2L9t 2 L0t 1 tAL9w 1 tBL0c 5 0
level it is necessary to acquire the position of the shock.
Although explicit treatment of shocks has been the subjectand we are left with the following subproblems in one di-
of many papers (see for example [11]), we use a very simplemension:
and effective shock detection scheme. It is based on the
assumption that the shock is represented, for example, by

2L9t 1 tAL9w 5 0 (19) a grid curve c 5 constant. If this is the case, then it is
enough to decompose the flow in the direction normal and

2L0t 1 tBL0c 5 0. (20) tangent to this curve all over the flow field, checking if one
of the acoustic signals speed relative to the normal flow is
changing sign across two adjacent volumes. If the signs ofLet us define nw 5 (wx/Ïw2

x 1 w2
y , wy/Ïw2

x 1 w2
y) and nc 5

(cx/Ïc2
x 1 c2

y , cy/Ïc2
x 1 c2

y). The left and right eigenvec- these speeds are such that the corresponding characteristics
are impinging, then we label that volume as one corre-tor matrices of A and B are calculated by using the formu-

las in Appendix I with n 5 nw and n 5 nc , respectively. sponding to the shock.
In general, the assumption that the shock overlaps aAfter Eqs. (19) and (20) are diagonalized, we upwind the

derivatives of the characteristic variables according to the curve c 5 constant is not always verified, unless some
adaptive grid algorithm is used. In presence of shockssigns of the corresponding eigenvalues. The time step Dt

is chosen according to the CFL condition. This method which are not parallel to the grid, the above algorithm
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might fail to detect the shock. However for these cases the 3. The BFGS algorithm (presented in Ref. [3]). This
algorithm (BFGS1) accounts for the curvature of the hy-costate equations would still converge because their one-

dimensional projections do not need any additional condi- persurface L representing the functional in the design
space. The shape coefficients are updated according to thetion, as it is seen considering the characteristic pattern for

these cases. In this respect, the solution of the costate formula ai r ai 2 vdi , where d 5 (..., di , ...) is the descent
direction determined by d 5 H =a L and H is an estimateequations is affected by the calculation of the shock posi-

tion in the sense that unless the proper position is chosen, of the inverse of the Hessian of the functional.
the costate equation time-dependent technique does not 4. The BFGS algorithm (as above) with a linear estimate
converge in the presence of shocks. of v such that d ? =a L 0 5 0. Each optimization step requires

solution of the flow field and costate equations twice
5. OPTIMIZATION EXPERIMENTS (BFGS2).

The computations are performed on a 40 3 20 grid unlessThe optimization problem is addressed with four differ-
otherwise specified. Total pressure and total temperatureent gradient-based criteria.
at the inlet are taken unitary and s(0, y) 5 0. At the outlet,

1. Steepest descent (SD1). The shape coefficients are the static pressure depends on the test case considered.
updated as follows: ai r ai 2 v(­L /­ai), where v is a For the lower wall ordinate y(Q), we have
given parameter.

2. Steepest descent with v selected as follows (SD2).
Because we know the gradient =a L at the present iteration,

y(Q) 5 5
0 if 20.5 # x , 0

O4
i51

aixi11(x 2 1)2 if 0 # x , 1

0 if 1 # x , 1.5.

we can use a tentative step length v and can compute
the gradient =a L 9. By calculating =a L ? =a L 9, we linearly
estimate v such that eventually =a L ? =a L 0 5 0. Each step
of the optimization requires solution of the flow field and
costate equations twice. The optimization consists in finding the four shape coeffi-

FIG. 3. (a) Target Mach number field; (b) starting configuration; (c) functional and modulus of gradient versus number of iterations for SD1;
(d) BFGS2.
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FIG. 4. (a) SD1; (b) SD2; (c) BFGS1; (d) BFGS2.

cients ai such that the modulus of the gradient =a L is channel as a starting configuration and a 5 (2,0,0,0) as
the target. In Fig. 4, we present the results obtained0. The time-dependent solutions to flow-field and costate

equations are considered steady when the residuals are when the outlet pressure is lowered to 0.5 of the inlet
total pressure. A relevant shock is present in the targetless than 1025.

We first devote our attention to the following test case: flow field, as is seen in Fig. 5. In the first optimization
iterations, we updated the shape coefficients as was donerecover a pressure distribution in a subsonic nozzle flow

where the outlet pressure is 0.9 referred to inlet total pres- for SD1. This step is necessary because this far from
the minimum the functional L might be not convex;sure. We take a 5 (2,0,0,0) and define the corresponding

configuration as the optimal configuration. Then, we com- therefore, the estimate of v used in BFGS2 and SD2
might not be correct. Figure 6 shows the sequence ofpute the flow field and determine the pressure distribution

on the lower wall. This pressure distribution p* is the one lower wall configurations obtained with BFGS2. The
optimal wall and the target wall overlap.we want to recover with the optimization algorithm. In

Fig. 3, the target flow field and the starting configuration, In all the examples in which the SD2 or the BFGS2
strategies were employed, both the gradient and the func-obtained with a 5 (22,0,0,0), are shown along with the

convergence histories for SD1 and BFGS2. tional suffered from small oscillations, despite the final
convergence to the minimum. The SD2 and BFGS2 algo-For the supersonic case, we take a constant section
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of reduction of the functional. Our experience showed,
nevertheless, that it was the most reliable in cases of com-
plicated surface topologies that can occur in flow fields
with embedded shocks. The BFGS2 becomes the most
efficient of the algorithms tested when it is coupled with
SD1. With this algorithm, the functional was reduced by
orders of magnitude.

FIG. 5. Target Mach number field. For the test case of Fig. 4, the central processing unit
(cpu) times required on a DEC 3000/500 were as
follows:

rithms estimate the step as is explained above. This esti-
SD1 4h 08minmate can be too large, therefore these two algorithms are
SD2 6h 19minmore subject to fluctuations. Even the SD1 and BFGS1
BFGS1 3h 59minalgorithm are monotonic decreasing sequences only if
BFGS2 5h 58minthere is an exact line search in the direction chosen. Since

we take a constant step, the decrease of the functional may
be not guaranteed. Furthermore, when a shock is present 6. CONCLUDING REMARKS
in the flow field, the functional may suffer from jumps due

We have derived an expression of the gradient of theto the discrete displacement of the discontinuity through
cost function with respect to the shape coefficients. Thethe grid.
boundary conditions for the costate equations have beenIn Fig. 4(d) it can be noticed that the solution is settled
presented; we have shown their relevance to the wellout after 70 iterations. On the way to the minimum, the
posedness of the problem. In the case of shocks, we pro-functional reaches values lower than the final one. This is
vided the proper conditions for the costate equations atdue to the fact that the minima of the analytic functional
the discontinuity. On the discrete level, we proposed aand of the discretized one may differ.
method of integrating the costate equations in accordanceThe second test case is designed to check the capability
with a revisited scheme. Additional work is needed toof the algorithm in detecting minima in cases for which
test the algorithm with more realistic test cases and tothe desired pressure distribution is out of the design
apply the One-Shot method (Ref. [13]) to hyperbolicspace (i.e., the functional is not 0 at the minimum).
problems.The pressure distribution p* is obtained with an outlet

boundary condition that differs from the one that is
actually used in the optimization routine. The results APPENDIX I
are given in Fig. 7.

The Jacobian matrices for the Euler equation in conser-The SD1 updating strategy had the least attractive rate
vative variables are

A 5 3
0 1 0 0

kV2 2 u2 (3 2 c)u 22kv 2k

2uv v u 0

2(ce 1 2kV2)u ce 2 kV2 2 2ku2 22kuv cu
4

(AI.1)

B 5 3
0 0 1 0

2uv v u 0

kV2 2 v2 22ku (3 2 c)v 2k

(2ce 1 2kV2)v 22kuv ce 2 kV2 2 2kv2 cv
4.

(AI.2)

The Jacobian in the direction n is C 5 Anx 1 Bny . TheFIG. 6. Wall shapes sequence with BFGS2. Starting configuration:
constant section. left (Ln) and right (L21

n ) eigenvector matrices of C are
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FIG. 7. (a) SD2; (b) BFGS2.

Ln 5

1 2 kV2/a2 2ku/a2 2kv/a2 22k/a2

Vt/r ny/r 2nx/r 0

(2Vn 1 kV2/a)/r (nx 2 2ku/a)/r (ny 2 2kv/a)/r 2k/ra

(Vn 1 kV2/a)/r 2(nx 1 2ku/a)/r 2(ny 1 2kv/a)/r 2k/ra

(AI.3)3 4
L21

n 5 ,

1 0 r/2a r/2a

u rny r(u 1 anx)/2a r(u 2 anx)/2a

v rnx r(v 1 any)/2a r(v 2 any)/2a

V 2/2 2 rVt r(V 2 1 a2/k 1 2aVn)/4a r(V 2 1 a2/k 2 2aVn)/4a

(AI.4)3 4
where Vn 5 V ? n and Vt 5 V ? t. The diagonal matrix

dLU 5 Eb

a

­p
­UU

Q

(pw 2 p*)Ũ dx 1 E
V

tL[(AŨ)x 1 BŨ)y] dVDn 5 LnCnL21
n is

1 E
Q

en
­rV
­U

Ũ ds 1 h.o.t.
(AII.1)

Dn 5 3
Vn 0 0 0

0 Vn 0 0

0 0 Vn 1 a 0

0 0 0 Vn 2 a
4 . (AI.5)

If we apply Gauss’s theorem to the second integral of the
above equation then we find Eq. (7). Equations (8) and
(9) are easily obtained.

To calculate dLa , we first consider the variation of the
functions defined on Q:APPENDIX II

To calculate dLU , consider the increment U r U 1 ai r ai 1 «ãi ⇒ pw r pw 1 «
dp
dy

fiãi and
«Ũ ⇒

rV r rV 1 «
­rV
­y

fiãi .F r F 1 «AŨ 1 h.o.t. and G r G 1 «BŨ 1 h.o.t.

We obtain Then we consider the variation of the geometry; other
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F̃n 5 5
j

[j 1 hs/(1 2 M 2)]u

[sj 2 h/(1 2 M 2)]u

Hj

6 rup,

where j 5 nx 1 sny , h 5 (ny 2 snx), H is the specific
total enthalpy, and M is the local Mach number. For an
arbitrary choice of rup, from Eq. (14) we have

l1j 1 l2u[j 1 hs/(1 2 M 2)] 1 l3u[sj 2 h/(1 2 M 2)]

1 l4Hj 5 0. (AIII.1)

FIG. 8. Variation of the domain of integration V. AH 5 dx, AD 5 At the outlet, if the flow is subsonic, then only the static
«ỹ and BC 5 «(ỹ 1 ­ỹ/­x dx). pressure is fixed; therefore, three components of the vector

Ũ are arbitrary. If we take rep as the dependent variable,
we have

higher order effects are disregarded. When the geometry rupnx 1 rvpnyis perturbed, the domain of integration V, the normal n and
rup(Vn 1 unx) 1 unyrvp 2 r̃uVnthe element of integration ds are perturbed. The domain V

is increased (Fig. 8) by a quantity «ãi fi cos u ds. The normal F̃n 5 .rvp(Vn 1 vny) 1 vnxrup 2 r̃vVnn is perturbed by a quantity 2«ãi dfi/dx cos2 ut; ds, by «ãi
2r̃(cp/2kr 1 u2 1 v2) 1 rup(Vnu 1 Hnx)dfi/dx cos u sin u ds. (See Fig. 9).

1 rvp(Vnv 1 Hny)
3 4

APPENDIX III For an arbitrary choice of r̃, rup, and rvp, from Eq. (14)
we have

Consider Eq. (14). This equation defines the boundary
conditions for L after we impose the proper constraints l1nx 1 l2(Vn 1 unx) 1 l3vnx 1 l4(Vnu 1 Hnx) 5 0
on Ũ. At the inlet, only one component of the variation

l1ny 1 l2uny 1 l3(Vn 1 vny) 1 l4(Vnv 1 Hny) 5 0of the flux in the direction normal to the boundary F̃n 5
(Anx 1 Bny)Ũ is independent of the others because total l2uVn 1 l3vVn 1 l4Vn(cp/2kr 1 u2 1 v2) 5 0.
pressure, total temperature, and s are fixed. If we express (AIII.2)
all components of F̃n in terms of rup we obtain

For a supersonic outlet, no conditions exist on Ũ; therefore,
we have

L 5 0. (AIII.3)

If a shock is embedded in the flow field, then the shock is
considered as a boundary for the costate equations. The
consequent boundary conditions are applied on each side,
i.e., Eq. (AIII.3) before the shock and Eq. (AIII.1) after
the shock.

For the upper wall, we have

F̃n 5 3
0

nx

ny

0
4 p̃

FIG. 9. Variation of n and ds. CE 5 «­ỹ/­x dx, DH 5 dx, DE 5 ds,
«du 5 EK/ds, and EK 5 CE cos u, i.e., du 5 ­ỹ/­x cos2 u. The variation
of ds is KC 5 «­ỹ/­x sin u dx. such that for an arbitrary choice of p̃ Eq. (14) is satisfied if
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